## 5 Answers

Reset to default

# Trending sort

**Trending** sort is based off of the default sorting method — by highest score — but it boosts votes that have happened recently, helping to surface more up-to-date answers.

It falls back to sorting by highest score if no posts are trending.

There are several different ways to do this. The “best” approach will depend mostly on how many line segments you want to plot.

If you’re just going to be plotting a handful (e.g. 10) line segments, then just do something like:

```
import numpy as np
import matplotlib.pyplot as plt
def uniqueish_color():
"""There're better ways to generate unique colors, but this isn't awful."""
return plt.cm.gist_ncar(np.random.random())
xy = (np.random.random((10, 2)) - 0.5).cumsum(axis=0)
fig, ax = plt.subplots()
for start, stop in zip(xy[:-1], xy[1:]):
x, y = zip(start, stop)
ax.plot(x, y, color=uniqueish_color())
plt.show()
```

If you’re plotting something with a million line segments, though, this will be terribly slow to draw. In that case, use a `LineCollection`

. E.g.

```
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
xy = (np.random.random((1000, 2)) - 0.5).cumsum(axis=0)
# Reshape things so that we have a sequence of:
# [[(x0,y0),(x1,y1)],[(x0,y0),(x1,y1)],...]
xy = xy.reshape(-1, 1, 2)
segments = np.hstack([xy[:-1], xy[1:]])
fig, ax = plt.subplots()
coll = LineCollection(segments, cmap=plt.cm.gist_ncar)
coll.set_array(np.random.random(xy.shape[0]))
ax.add_collection(coll)
ax.autoscale_view()
plt.show()
```

For both of these cases, we’re just drawing random colors from the “gist_ncar” coloramp. Have a look at the colormaps here (gist_ncar is about 2/3 of the way down): http://matplotlib.org/examples/color/colormaps_reference.html

4

Copied from this example:

```
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from matplotlib.colors import ListedColormap, BoundaryNorm
x = np.linspace(0, 3 * np.pi, 500)
y = np.sin(x)
z = np.cos(0.5 * (x[:-1] + x[1:])) # first derivative
# Create a colormap for red, green and blue and a norm to color
# f' < -0.5 red, f' > 0.5 blue, and the rest green
cmap = ListedColormap(['r', 'g', 'b'])
norm = BoundaryNorm([-1, -0.5, 0.5, 1], cmap.N)
# Create a set of line segments so that we can color them individually
# This creates the points as a N x 1 x 2 array so that we can stack points
# together easily to get the segments. The segments array for line collection
# needs to be numlines x points per line x 2 (x and y)
points = np.array([x, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
# Create the line collection object, setting the colormapping parameters.
# Have to set the actual values used for colormapping separately.
lc = LineCollection(segments, cmap=cmap, norm=norm)
lc.set_array(z)
lc.set_linewidth(3)
fig1 = plt.figure()
plt.gca().add_collection(lc)
plt.xlim(x.min(), x.max())
plt.ylim(-1.1, 1.1)
plt.show()
```

See the answer here to generate the “periods” and then use the matplotlib scatter function as @tcaswell mentioned. Using the plot.hold function you can plot each period, colors will increment automatically.

Cribbing the color choice off of @JoeKington,

```
import numpy as np
import matplotlib.pyplot as plt
def uniqueish_color(n):
"""There're better ways to generate unique colors, but this isn't awful."""
return plt.cm.gist_ncar(np.random.random(n))
plt.scatter(latt, lont, c=uniqueish_color(len(latt)))
```

You can do this with `scatter`

.

1

I have been searching for a short solution how to use pyplots line plot to show a time series coloured by a label feature **without using scatter** due to the amount of data points.

I came up with the following workaround:

```
plt.plot(np.where(df["label"]==1, df["myvalue"], None), color="red", label="1")
plt.plot(np.where(df["label"]==0, df["myvalue"], None), color="blue", label="0")
plt.legend()
```

The drawback is you are creating two different line plots so the connection between the different classes is not shown. For my purposes it is not a big deal. It may help someone.

2

18